Converting to a ToddCoxeter
This page contains documentation relating to converting
libsemigroups_pybind11 objects into ToddCoxeter instances using the
to function.
See also
The to function for an overview of possible conversions
between libsemigroups_pybind11 types.
Various uses
Recall that the signature for the to function is to(*args, Return).
In what follows, we explain how different values of args and Return may be
used to construct ToddCoxeter objects. The following options are
possible:
Converting a FroidurePin to a ToddCoxeter
To construct a ToddCoxeter from a FroidurePin, specify all of the
following values for args:
knd (
congruence_kind) – the kind of the congruence being construed;
fpb (
FroidurePin) – theFroidurePininstance to be converted; and
wg (
WordGraph) – the left or right Cayley graph of fpb.
Additionally, specify one of the following for Return:
(ToddCoxeter, str)for constructing aToddCoxeteron words with typestr.
(ToddCoxeter, list[int])for constructing aToddCoxeteron words with typelist[int].
This function converts the FroidurePin object fpb into a
ToddCoxeter object using the WordGraph wg (which should be
either the FroidurePin.left_cayley_graph or the
FroidurePin.right_cayley_graph of fpb).
This returned ToddCoxeter object represents the trivial congruence over
the semigroup defined by fpb.
This will throw a LibsemigroupsError if wg is not the
FroidurePin.left_cayley_graph or the
FroidurePin.right_cayley_graph of fpb.
>>> from libsemigroups_pybind11 import (
...     Bipartition,
...     congruence_kind,
...     FroidurePin,
...     to,
...     ToddCoxeter,
... )
>>> b1 = Bipartition([[1, -1], [2, -2], [3, -3], [4, -4]])
>>> b2 = Bipartition([[1, -2], [2, -3], [3, -4], [4, -1]])
>>> b3 = Bipartition([[1, -2], [2, -1], [3, -3], [4, -4]])
>>> b4 = Bipartition([[1, 2], [3, -3], [4, -4], [-1, -2]])
>>> S = FroidurePin(b1, b2, b3, b4)
>>> tc = to(
...     congruence_kind.twosided,   # knd
...     S,                          # fpb
...     S.right_cayley_graph(),     # wg
...     rtype=(ToddCoxeter, str),
... )
>>> tc.run()
>>> S.size() == tc.number_of_classes()
True
Converting a KnuthBendix to a ToddCoxeter
To construct a ToddCoxeter from a KnuthBendix specify all of the
following values for args:
knd (
congruence_kind) – the kind of the congruence being constructed.
kb (
KnuthBendix) – theKnuthBendixobject being converted.
Additionally, specify the following for Return:
(ToddCoxeter,)for constructing aToddCoxeter.
This function converts the KnuthBendix object kb into a
ToddCoxeter object using the right Cayley graph of the semigroup
represented by kb.
This returned ToddCoxeter object represents the trivial congruence over
the semigroup defined by kb.
This will throw a LibsemigroupsError if either:
kb.kind()is notcongruence_kind.twosided; or
kb.number_of_classes()is not finite. In this case, useToddCoxeter(knd, kb.presentation())instead.
>>> from libsemigroups_pybind11 import (
...     congruence_kind,
...     to,
...     KnuthBendix,
...     Presentation,
...     presentation,
...     ToddCoxeter,
... )
>>> p = Presentation('ab')
>>> presentation.add_rule(p, 'ab', 'ba')
>>> presentation.add_rule(p, 'aa', 'a')
>>> presentation.add_rule(p, 'bb', 'b')
>>> kb = KnuthBendix(congruence_kind.twosided, p)
>>> tc = to(
...     congruence_kind.twosided,   # knd
...     kb,                         # kb
...     rtype=(ToddCoxeter,)
... )
>>> tc.run()
>>> tc.number_of_classes() == kb.number_of_classes()
True