Bibliography

[AR22]

A. Abram and C. Reutenauer. The stylic monoid. Semigroup Forum, 105(1):1–45, 2022. doi:10.1007/s00233-022-10285-3.

[AHM+24]

Antoine Abram, Florent Hivert, James D. Mitchell, Jean-Christophe Novelli, and Maria Tsalakou. Power quotients of plactic-like monoids. 06 2024. doi:10.4204/EPTCS.403.7.

[AC75]

Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to bibliographic search. Communications of the ACM, 18(6):333–340, June 1975. URL: https://doi.org/10.1145/360825.360855 (visited on 2024-03-26), doi:10.1145/360825.360855.

[Aiz58]

A. Aizenstat. Defining relations of finite symmetric semigroups. Mat. Sb. N.S., 45(87):261–280, 1958.

[Aiz62]

A. Aizenstat. Generating relations of an endomorphism semigroup of a finite linearly ordered chain. Sibirsk. Mat. Z., 2:9–11, 1962.

[AMMT23]

Marina Anagnostopoulou-Merkouri, James D. Mitchell, and Maria Tsalakou. Computing the congruences of a finite semigroup or monoid. 2023. URL: https://arxiv.org/abs/2302.06295, doi:10.48550/ARXIV.2302.06295.

[AR00]

Robert E. Arthur and N. Ruskuc. Presentations for two extensions of the monoid of order-preserving mappings on a finite chain. Southeast Asian Bulletin of Mathematics, 24(1):1–7, 2000. doi:10.1007/s10012-000-0001-1.

[ACOConnorR00]

H. Ayik, C. M. Campbell, J. J. O'Connor, and N. Ruskuc. Minimal presentations and efficiency of semigroups. Semigroup Forum, 60(2):231–242, 2000. doi:10.1007/s002339910016.

[Bur12]

William Burnside. Theory of Groups of Finite Order. Cambridge University Press, 2012. doi:10.1017/cbo9781139237253.023.

[CR80]

C. M. Campbell and E. F. Robertson. A deficiency zero presentation for sl(2, p). Bulletin of the London Mathematical Society, 12:17–20, 1980. doi:10.1112/blms/12.1.17.

[CRRT94]

Colin M. Campbell, Edmund F. Robertson, Nikola Ruskuc, and Richard M. Thomas. Fibonacci semigroups. Journal of Pure and Applied Algebra, 94(1):49–57, 1994. URL: https://doi.org/10.1016/0022-4049(94)90005-1, doi:10.1016/0022-4049(94)90005-1.

[Car56]

Robert D. Carmichael. Introduction To The Theory Of Groups Of Finite Order. Dover Publications, 1956.

[CDF11]

Vincent Carnino and Sven De Felice. Random Generation of Deterministic Acyclic Automata Using Markov Chains, pages 65–75. Springer Berlin Heidelberg, 2011. URL: http://dx.doi.org/10.1007/978-3-642-22256-6_7, doi:10.1007/978-3-642-22256-6_7.

[CEK+01]

Julien Cassaigne, Marc Espie, Daniel Krob, Jean-Christophe Novelli, and Florent Hivert. The chinese monoid. International Journal of Algebra and Computation, 11(03):301–334, 2001. URL: https://doi.org/10.1142/S0218196701000425, doi:10.1142/s0218196701000425.

[CMST22]

T. D. H. Coleman, J. D. Mitchell, F. L. Smith, and M. Tsalakou. The todd-coxeter algorithm for semigroups and monoids. 2022. arXiv:arXiv:2203.11148.

[CM79]

H. S. M. Coxeter and W. O. J. Moser. Generators and relators for discrete groups. Springer-Verlag, 1979.

[EEF07]

David Easdown, James East, and D. G. FitzGerald. A presentation for the dual symmetric inverse monoid. 2007. doi:10.48550/arxiv.0707.2439.

[Eas11]

James East. Generators and relations for partition monoids and algebras. Journal of Algebra, 339(1):1–26, 2011. doi:10.1016/j.jalgebra.2011.04.008.

[Eas21]

James East. Presentations for Temperley–Lieb Algebras. The Quarterly Journal of Mathematics, 72(4):1253–1269, 02 2021. URL: https://doi.org/10.1093/qmath/haab001, doi:10.1093/qmath/haab001.

[Fer22]

Vitor Hugo Fernandes. On the cyclic inverse monoid on a finite set. 2022. doi:10.48550/ARXIV.2211.02155.

[FP22]

Vítor H. Fernandes and Tânia Paulista. On the monoid of partial isometries of a cycle graph. 2022. doi:10.48550/ARXIV.2205.02196.

[Fit03]

D.G. FitzGerald. A presentation for the monoid of uniform block permutations. Bulletin of the Australian Mathematical Society, 68(2):317–324, 2003. doi:10.1017/s0004972700037692.

[FP97]

Véronique Froidure and Jean-Eric Pin. Algorithms for computing finite semigroups. In Foundations of computational mathematics (Rio de Janeiro, 1997), pages 112–126. Springer, Berlin, 1997.

[Gab00]

Harold N. Gabow. Path-based depth-first search for strong and biconnected components. Information Processing Letters, 74(34):107 – 114, 2000. URL: https://www.sciencedirect.com/science/article/pii/S002001900000051X, doi:https://dx.doi.org/10.1016/S0020-0190(00)00051-X.

[GM09]

Olexandr Ganyushkin and Volodymyr Mazorchuk. Classical Finite Transformation Semigroups. Springer London, 2009. doi:10.1007/978-1-84800-281-4.

[Gay18]

Joël Gay. Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups. Theses, Université Paris Saclay (COmUE), June 2018. URL: https://theses.hal.science/tel-01861199.

[GH19]

Joël Gay and Florent Hivert. The 0-rook monoid and its representation theory. October 2019. URL: https://doi.org/10.48550/arXiv.1910.11740.

[Gil79]

Robert H Gilman. Presentations of groups and monoids. Journal of Algebra, 57(2):544–554, April 1979.

[God09]

Eddy Godelle. A note on renner monoids. 2009. URL: https://arxiv.org/abs/0904.0926, doi:10.48550/arxiv.0904.0926.

[GKKL08]

R. M Guralnick, W. M Kantor, M. Kassabov, and A. Lubotzky. Presentations of finite simple groups: a quantitative approach. Journal of the American Mathematical Society, 21:711–774, 2008. doi:10.1090/S0894-0347-08-00590-0.

[HR05]

Tom Halverson and Arun Ram. Partition algebras. European Journal of Combinatorics, 26:869–921, 2005. doi:10.1016/j.ejc.2004.06.005.

[HR99]

George Havas and Colin Ramsay. Coset enumeration: ACE. PhD thesis, University of Queensland, 1999.

[Hol19]

Derek Holt. Kbmag – GAP package, Version 1.5.9. July 2019. URL: https://gap-packages.github.io/kbmag/.

[HK71]

John E. Hopcroft and R. M. Karp. A linear algorithm for testing equivalence of finite automata. December 1971. URL: https://hdl.handle.net/1813/5958.

[II74]

Nagayoshi Iwahori and Nobuko Iwahori. On a set of generating relations of the full transformation semigroups. Journal of Combinatorial Theory, Series A, 16(2):147–158, 1974. URL: https://www.sciencedirect.com/science/article/pii/0097316574900405, doi:https://doi.org/10.1016/0097-3165(74)90040-5.

[Jan12]

Matthias Jantzen. Confluent string rewriting. Volume 14. Springer Science & Business Media, 2012.

[JMP17]

Julius Jonusas, James D. Mitchell, and Markus Pfeiffer. Two variants of the Froidure-Pin algorithm for finite semigroups. Port. Math., 74(3):173–200, 2017. URL: https://doi.org/10.4171/PM/2001, doi:10.4171/pm/2001.

[Kam09a]

Mark Kambites. Small overlap monoids. II. Automatic structures and normal forms. J. Algebra, 321(8):2302–2316, 2009. URL: http://dx.doi.org/10.1016/j.jalgebra.2008.12.028, doi:10.1016/j.jalgebra.2008.12.028.

[Kam09b]

Mark Kambites. Small overlap monoids. I. The word problem. J. Algebra, 321(8):2187–2205, 2009. URL: http://dx.doi.org/10.1016/j.jalgebra.2008.09.038, doi:10.1016/j.jalgebra.2008.09.038.

[Knu70]

Donald E. Knuth. Permutations, matrices, and generalised young tableaux. Pacific Journal of Mathematics, 34(3):709–727, 1970. doi:10.2140/pjm.1970.34.709.

[Knu09]

Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley Professional, 12th edition, 2009. ISBN 0321580508, 9780321580504.

[Kon94]

Janusz Konieczny. Green's equivalences in finite semigroups of binary relations. Semigroup Forum, 48(2):235–252, 1994. doi:10.1007/bf02573672.

[KM07]

Ganna Kudryavtseva and Volodymyr Mazorchuk. On presentations of brauer-type monoids. Central European Journal of Mathematics, 2007. doi:10.2478/s11533-006-0017-6.

[LM90]

Gerard Lallement and Robert McFadden. On the determination of Green's relations in finite transformation semigroups. J. Symbolic Comput., 10(5):481–498, 1990. doi:10.1016/s0747-7171(08)80057-0.

[LSchutzenberger81]

Alain Lascoux and Marcel-P. Schützenberger. Le monoïde plaxique. In Noncommutative structures in algebra and geometric combinatorics (Naples, 1978), volume 109 of Quad. “Ricerca Sci.”, pages 129–156. CNR, Rome, 1981.

[MM07]

Victor Maltcev and Volodymyr Mazorchuk. Presentation of the singular part of the brauer monoid. Mathematica Bohemica, 2007. doi:10.21136/mb.2007.134125.

[MM11]

Paul Martin and Volodymyr Mazorchuk. Partitioned binary relations. 2011. URL: https://arxiv.org/abs/1102.0862, arXiv:1102.0862.

[MM13]

Paul Martin and Volodymyr Mazorchuk. Partitioned binary relations. Mathematica Scandinavica, 113(1):30–52, 2013. URL: http://www.jstor.org/stable/24493105.

[MT21]

J. D. Mitchell and M. Tsalakou. An explicit algorithm for normal forms in small overlap monoids. preprint, 2021.

[MW24]

James D. Mitchell and Murray T. Whyte. Short presentations for transformation monoids. 06 2024. URL: https://arxiv.org/abs/2406.19294.

[Moo97]

E. H. Moore. Concerning the abstract groups of order k!, k!/2, ... Proc. London Math. Soc., 1(28):357–366, 1897.

[Nov00]

Jean-Christophe Novelli. On the hypoplactic monoid. Discrete Mathematics, 217(1):315–336, 2000. URL: https://www.sciencedirect.com/science/article/pii/S0012365X99002708, doi:https://doi.org/10.1016/S0012-365X(99)00270-8.

[PHL13]

Eliezer Posner, Kris Hatch, and Megan Ly. Presentation of the motzkin monoid. 01 2013. URL: https://arxiv.org/abs/1301.4518.

[RR10]

J. Radoszewski and W. Rytter. Efficient testing of equivalence of words in a free idempotent semigroup. In SOFSEM 2010: Theory and Practice of Computer Science, 663–671. 01 2010. doi:10.1007/978-3-642-11266-9_55.

[Rus95]

Nikola Ruskuc. Semigroup presentations. PhD thesis, University of St Andrews, 1995. URL: https://research-repository.st-andrews.ac.uk/handle/10023/2821.

[Shu60]

É. G. Shutov. Defining relations in finite semigroups of partial transformations. Sov. Math., Dokl., 1:784–786, 1960.

[Sim94]

Charles C. Sims. Computation with Finitely Presented Groups. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1994. URL: https://doi.org/10.1017/CBO9780511574702.

[Ste87]

Joseph Buchanan Stephen. Applications of automata theory to presentations of monoids and inverse monoids. ETD collection for University of Nebraska-Lincoln, 01 1987. URL: https://digitalcommons.unl.edu/dissertations/AAI8803771.