Converting to a KnuthBendix
This page contains documentation relating to converting
libsemigroups_pybind11 objects into KnuthBendix instances using the
to function.
See also
The to function for an overview of possible conversions
between libsemigroups_pybind11 types.
Various uses
Recall that the signature for the to function is to(*args, Return).
In what follows, we explain how different values of args and Return may be
used to construct KnuthBendix objects. The following options are
possible:
Converting a ToddCoxeter to a KnuthBendix (default rewriter)
To construct a KnuthBendix from a ToddCoxeter using the default
rewriter, specify all of the following values for args:
knd (
congruence_kind) – the kind of the congruence being constructed.
tc (
ToddCoxeter) – theToddCoxeterobject being converted.
Additionally, specify the following for Return:
(KnuthBendix,)for constructing aKnuthBendixwith the default rewriter.
This function converts a ToddCoxeter object tc to a KnuthBendix
object using ToddCoxeter.presentation. This is equivalent to specifying
(KnuthBendix, 'RewriteTrie') as described below.
This returned KnuthBendix object represents the trivial congruence over
the semigroup defined by tc.
>>> from libsemigroups_pybind11 import (
...     congruence_kind,
...     to,
...     KnuthBendix,
...     Presentation,
...     presentation,
...     ToddCoxeter,
... )
>>> p = Presentation('ab')
>>> presentation.add_rule(p, 'ab', 'ba')
>>> presentation.add_rule(p, 'aa', 'a')
>>> presentation.add_rule(p, 'bb', 'b')
>>> tc = ToddCoxeter(congruence_kind.twosided, p)
>>> kb = to(
...     congruence_kind.twosided,   # knd
...     tc,                         # tc
...     rtype=(KnuthBendix,)
... )
>>> kb.run()
>>> kb.number_of_classes() == tc.number_of_classes()
True
Converting a ToddCoxeter to a KnuthBendix
To construct a KnuthBendix from a ToddCoxeter, specify all of the
following values for args:
knd (
congruence_kind) – the kind of the congruence being constructed.
tc (
ToddCoxeter) – theToddCoxeterobject being converted.
Additionally, specify one of the following for Return:
(KnuthBendix, 'RewriteTrie')for constructing aKnuthBendixwith the theRewriteTrie'rewriter.
(KnuthBendix, 'RewriteFromLeft')for constructing aKnuthBendixwith the theRewriteFromLeft'rewriter.
This function converts a ToddCoxeter object tc to a KnuthBendix
object with the rewriter as specified above, using
ToddCoxeter.presentation.
This returned KnuthBendix object represents the trivial congruence over
the semigroup defined by tc.
>>> from libsemigroups_pybind11 import (
...     congruence_kind,
...     to,
...     KnuthBendix,
...     Presentation,
...     presentation,
...     ToddCoxeter,
... )
>>> p = Presentation('ab')
>>> presentation.add_rule(p, 'ab', 'ba')
>>> presentation.add_rule(p, 'aa', 'a')
>>> presentation.add_rule(p, 'bb', 'b')
>>> tc = ToddCoxeter(congruence_kind.twosided, p)
>>> kb = to(
...     congruence_kind.twosided,               # knd
...     tc,                                     # tc
...     rtype=(KnuthBendix, 'RewriteFromLeft')
... )
>>> kb.run()
>>> kb.number_of_classes() == tc.number_of_classes()
True
Converting a FroidurePin to a KnuthBendix
To construct a KnuthBendix from a FroidurePin, specify all of the
following values for args:
knd (
congruence_kind) – the kind of the congruence being constructed.
fpb (
FroidurePin) – theFroidurePinobject being converted.
Additionally, specify one of the following for Return:
(KnuthBendix, str, 'RewriteTrie')for constructing aKnuthBendixon words with typestrusing theRewriteTrie'rewriter.
(KnuthBendix, list[int], 'RewriteTrie')for constructing aKnuthBendixon words with typelist[int]using theRewriteTrie'rewriter.
(KnuthBendix, str, 'RewriteFromLeft')for constructing aKnuthBendixon words with typestrusing theRewriteFromLeft'rewriter.
(KnuthBendix, list[int], 'RewriteFromLeft')for constructing aKnuthBendixon words with typelist[int]using theRewriteFromLeft'rewriter.
This function converts a FroidurePin object fpb to a KnuthBendix
object with the word type and rewriter as specified above. This is done using
the presentation obtained from to(fpb, rtype=(Presentation, Word) where
Word is either str or list[int].
This returned KnuthBendix object represents the trivial congruence over
the semigroup defined by fpb.
>>> from libsemigroups_pybind11 import (
...     Bipartition,
...     congruence_kind,
...     FroidurePin,
...     to,
...     KnuthBendix,
...     Presentation,
...     presentation,
... )
>>> b1 = Bipartition([[1, -1], [2, -2], [3, -3], [4, -4]])
>>> b2 = Bipartition([[1, -2], [2, -3], [3, -4], [4, -1]])
>>> b3 = Bipartition([[1, -2], [2, -1], [3, -3], [4, -4]])
>>> b4 = Bipartition([[1, 2], [3, -3], [4, -4], [-1, -2]])
>>> S = FroidurePin(b1, b2, b3, b4)
>>> kb = to(
...     congruence_kind.twosided,                           # knd
...     S,                                                  # tc
...     rtype=(KnuthBendix, list[int], 'RewriteFromLeft')
... )
>>> kb.run()
>>> kb.number_of_classes() == S.size()
True