libsemigroups  v3.0.0
C++ library for semigroups and monoids
Loading...
Searching...
No Matches
Bibliography
[1]

A. Abram and C. Reutenauer. The stylic monoid. Semigroup Forum, 105(1):1–45, 2022.

[2]

Antoine Abram, Florent Hivert, James D. Mitchell, Jean-Christophe Novelli, and Maria Tsalakou. Power quotients of plactic-like monoids, 06 2024.

[3]

Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to bibliographic search. 18(6):333–340.

[4]

A. Aizenstat. Defining relations of finite symmetric semigroups. Mat. Sb. N.S., 45(87):261–280.

[5]

Marina Anagnostopoulou-Merkouri, James D. Mitchell, and Maria Tsalakou. Computing the congruences of a finite semigroup or monoid, 2023.

[6]

Robert E. Arthur and N. Ruskuc. Presentations for two extensions of the monoid of order-preserving mappings on a finite chain. Southeast Asian Bulletin of Mathematics, 24(1):1–7, 2000.

[7]

H. Ayik, C. M. Campbell, J. J. O'Connor, and N. Ruskuc. Minimal presentations and efficiency of semigroups. Semigroup Forum, 60(2):231–242, 2000.

[8]

Jan De Beule, Julius Jonušas, James D. Mitchell, Michael Torpey, Maria Tsalakou, and Wilf A. Wilson. Digraphs - GAP package, version 1.9.0, 09 2024.

[9]

William Burnside. Theory of Groups of Finite Order. Cambridge University Press, 2012.

[10]

C. M. Campbell and E. F. Robertson. A deficiency zero presentation for sl(2, p). Bulletin of the London Mathematical Society, 12:1–20, 1980.

[11]

Colin M. Campbell, Edmund F. Robertson, Nikola Ruskuc, and Richard M. Thomas. Fibonacci semigroups. Journal of Pure and Applied Algebra, 94(1):49–57, 1994.

[12]

Robert D. Carmichael. Introduction To The Theory Of Groups Of Finite Order. Dover Publications, 1956.

[13]

Vincent Carnino and Sven De Felice. Random Generation of Deterministic Acyclic Automata Using Markov Chains, pages 65–75. Springer Berlin Heidelberg, 2011.

[14]

Julien Cassaigne, Marc Espie, Daniel Krob, Jean-Christophe Novelli, and Florent Hivert. The chinese monoid. International Journal of Algebra and Computation, 11(03):301–334, 2001.

[15]

T. D. H. Coleman, J. D. Mitchell, F. L. Smith, and M. Tsalakou. The todd-coxeter algorithm for semigroups and monoids, 2022.

[16]

David Easdown, James East, and D. G. FitzGerald. A presentation for the dual symmetric inverse monoid, 2007.

[17]

James East. Generators and relations for partition monoids and algebras. Journal of Algebra, 339(1):1–26, 2011.

[18]

James East. Presentations for Temperley–Lieb Algebras. The Quarterly Journal of Mathematics, 72(4):1253–1269, 02 2021.

[19]

Vítor H. Fernandes and Tânia Paulista. On the monoid of partial isometries of a cycle graph, 2022.

[20]

Vitor Hugo Fernandes. On the cyclic inverse monoid on a finite set, 2022.

[21]

D.G. FitzGerald. A presentation for the monoid of uniform block permutations. Bulletin of the Australian Mathematical Society, 68(2):317–324, 2003.

[22]

Véronique Froidure and Jean-Eric Pin. Algorithms for computing finite semigroups. In Foundations of computational mathematics (Rio de Janeiro, 1997), pages 112–126. Springer, Berlin, 1997.

[23]

Harold N. Gabow. Path-based depth-first search for strong and biconnected components. Information Processing Letters, 74(34):107–114, 2000.

[24]

Olexandr Ganyushkin and Volodymyr Mazorchuk. Classical Finite Transformation Semigroups. Springer London, 2009.

[25]

Joël Gay and Florent Hivert. The 0-rook monoid and its representation theory, 10 2019.

[26]

Joël Gay. Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups. Theses, Université Paris Saclay (COmUE), June 2018.

[27]

Eddy Godelle. A note on renner monoids, 2009.

[28]

Gaël Guennebaud, Benoît Jacob, and others. Eigen v3. http://eigen.tuxfamily.org, 2010.

[29]

R. M Guralnick, W. M Kantor, M. Kassabov, and A. Lubotzky. Presentations of finite simple groups: A quantitative approach. Journal of the American Mathematical Society, 21:711–774, 2008.

[30]

Tom Halverson and Arun Ram. Partition algebras. European Journal of Combinatorics, 26:869–921, 2005.

[31]

Derek F. Holt, Bettina Eick, and Eamonn A. O'Brien. Handbook of Computational Group Theory. CRC, 1st edition, 2005.

[32]

Derek F. Holt. kbmag – GAP package, Version 1.5.9, 07 2019.

[33]

John E. Hopcroft and R. M. Karp. A linear algorithm for testing equivalence of finite automata. Technical report, 12 1971.

[34]

Nagayoshi Iwahori and Nobuko Iwahori. On a set of generating relations of the full transformation semigroups. Journal of Combinatorial Theory, Series A, 16(2):147–158, 1974.

[35]

Matthias Jantzen. Confluent string rewriting, volume 14. Springer Science & Business Media, 2012.

[36]

Mark Kambites. Small overlap monoids. I. The word problem. J. Algebra, 321(8):2187–2205, 2009.

[37]

Mark Kambites. Small overlap monoids. II. Automatic structures and normal forms. J. Algebra, 321(8):2302–2316, 2009.

[38]

Donald E. Knuth. Permutations, matrices, and generalised young tableaux. Pacific Journal of Mathematics, 34(3):709–727, 1970.

[39]

Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley Professional, 12th edition, 2009.

[40]

Janusz Konieczny. Green's equivalences in finite semigroups of binary relations. Semigroup Forum, 48(2):235–252, 1994.

[41]

Ganna Kudryavtseva and Volodymyr Mazorchuk. On presentations of brauer-type monoids. Central European Journal of Mathematics, 4, 2007.

[42]

Gerard Lallement and Robert McFadden. On the determination of Green's relations in finite transformation semigroups. J. Symbolic Comput., 10(5):481–498, 1990.

[43]

Victor Maltcev and Volodymyr Mazorchuk. Presentation of the singular part of the brauer monoid. Mathematica Bohemica, 132, 2007.

[44]

Paul Martin and Volodymyr Mazorchuk. Partitioned binary relations, 2011.

[45]

J. D. Mitchell and others. Semigroups - GAP package, Version 5.5.0, Feb 2025.

[46]

James D. Mitchell and Murray T. Whyte. Short presentations for transformation monoids, 06 2024.

[47]

E. H. Moore. Concerning the abstract groups of order k ! and ½k ! holohedrically isomorphic with the symmetric and the alternating substitution-groups on k letters. Proc. London Math. Soc., 1(28):357–366, 1897.

[48]

Jean-Christophe Novelli. On the hypoplactic monoid. Discrete Mathematics, 217(1):315–336, 2000.

[49]

Carl-Fredrik Nyberg-Brodda. The word problem for one-relation monoids: a survey. Semigroup Forum, 103:297–355, 2021.

[50]

Eliezer Posner, Kris Hatch, and Megan Ly. Presentation of the motzkin monoid, 01 2013.

[51]

J. Radoszewski and W. Rytter. Efficient testing of equivalence of words in a free idempotent semigroup. In SOFSEM 2010: Theory and Practice of Computer Science, pages 663–671, 01 2010.

[52]

Nikola Ruskuc. Semigroup presentations. PhD thesis, University of St Andrews, 1995.

[53]

É. G. Shutov. Defining relations in finite semigroups of partial transformations. Sov. Math., Dokl., 1:784–786, 1960.

[54]

Charles C. Sims. Computation with finitely presented groups. Encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge,, England, New York, 1994.

[55]

Louis Solomon. The Iwahori algebra of \(M_n(F_q)\). A presentation and a representation on tensor space. Journal of Algebra, 273(1):206––226, March 2004.

[56]

Joseph Buchanan Stephen. Applications of automata theory to presentations of monoids and inverse monoids. ETD collection for University of Nebraska-Lincoln, 01 1987.